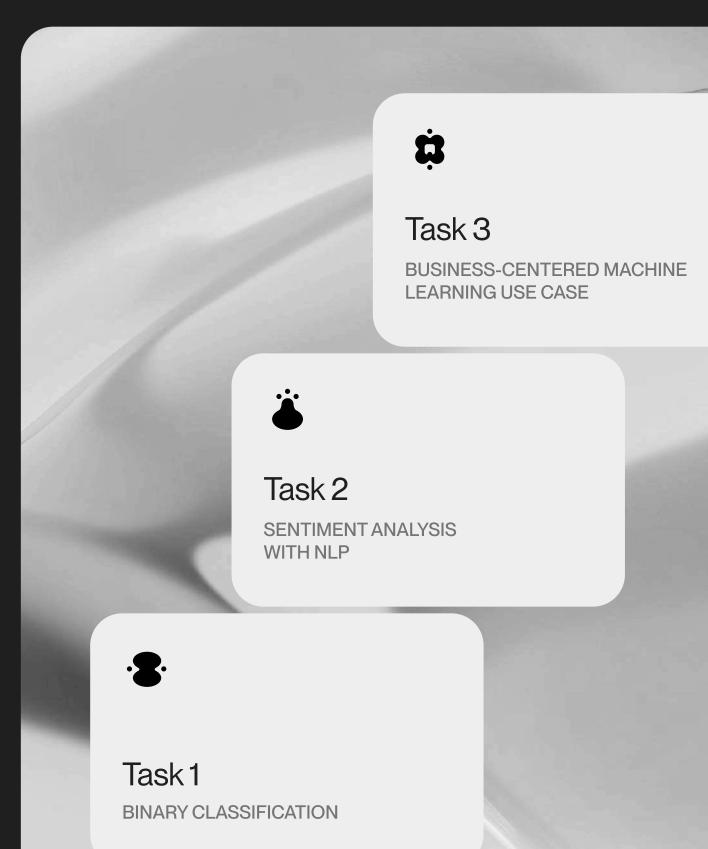


Al Interview Kit

3 Technical Tasks with Solutions, Evaluation Tips & Red Flags

About these tasks

These technical tasks are designed to assess how AI developers approach real-world challenges—from data cleaning and modeling to evaluating results and aligning with business goals. Use the solutions, red flags, and evaluation tips to make your interviews structured, efficient, and insightful.



Binary classification

You're building a basic spam filter. You receive a CSV with features like num_links, has_attachment, email_length, sender_reputation_score, and a binary target column: is_spam (1 for spam, 0 for not spam). Assume that only 5% of emails are spam.

Task for the candidate

- (01) BUILD AND EVALUATE A BINARY CLASSIFICATION MODEL
- (02) HANDLE ANY NOISY OR MISSING DATA
- (03) PRESENT EVALUATION METRICS (ACCURACY, PRECISION, RECALL)
- 04) COMPARE AGAINST A DUMMY CLASSIFIER THAT ALWAYS PREDICTS "NOT SPAM"
- (05) EXPLAIN ANY PREPROCESSING OR FEATURE ENGINEERING DECISIONS

Task 1 Binary classification

- PREPROCESSING
 Fill missing values (median), scale features (optional), remove outliers.
- MODELING
 Use Logistic Regression, RandomForestClassifier, or XGBoost. Stratified train/test split.
- EVALUATION
 Precision, recall, F1-score, ROC-AUC. Compare to baseline.
- EXTRAS
 Discuss overfitting and model drift concerns.

What to look for

- HANDLES IMBALANCE
 (E.G., CLASS WEIGHTS, RESAMPLING)
- INTERPRETS CONFUSION MATRIX CLEARLY
- EXPLAINS MODEL AND METRIC CHOICES
- MENTIONS PRODUCTION CONSIDERATIONS

► Red flags

- ONLY REPORTS ACCURACY
- IGNORES CLASS IMBALANCE
- APPLIES DEEP LEARNING UNNECESSARILY
- DOESN'T EXPLAIN PREPROCESSING DECISIONS

Bonus flags

DEPLOYMENT

How would you monitor precision/recall drift over time?

ALTERNATIVE

Could use anomaly detection for evolving spam patterns.

Sentiment analysis with NLP

You're given a dataset of customer reviews labeled as **Positive**, **Negative**, or **Neutral**.

- (01) BUILD A SENTIMENT CLASSIFIER USING A SIMPLE NLP PIPELINE
- (02) TOKENIZE AND VECTORIZE THE TEXT
- (03) TRAIN A LIGHTWEIGHT MODEL (E.G., LOGISTIC REGRESSION, NAIVE BAYES)
- (04) OUTPUT CLASSIFICATION METRICS AND A CONFUSION MATRIX
- (05) ADDRESS NEUTRAL CLASS DIFFICULTY
- 06) SHOW EXAMPLES OF MISCLASSIFIED REVIEWS FOR ERROR ANALYSIS

Sentiment analysis with NLP

- PREPROCESSING
 Lowercasing, remove punctuation, stop words, optional lemmatization.
- VECTORIZATION
 TF-IDF or CountVectorizer. Limit vocab if needed.
- MODELING
 Logistic Regression or Naive Bayes. Stratified split.
- EVALUATION
 Macro F1, per-class recall, confusion matrix.
- IMPROVEMENTS
 Mention oversampling, class weights, potential use of transformers.

What to look for

- BALANCED EVALUATION METRICS (NOT JUST ACCURACY)
- INSIGHT INTO WHY NEUTRAL CLASS IS HARD
- JUSTIFIES MODEL AND PREPROCESSING CHOICES
- ACKNOWLEDGES MODEL LIMITATIONS

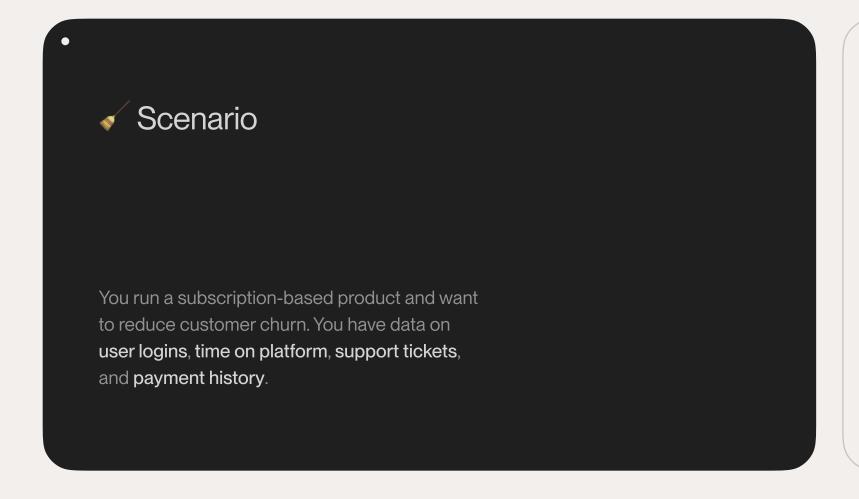
► Red flags

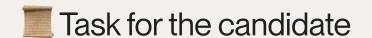
- SKIPS TEXT PREPROCESSING
- JUMPS TO DEEP LEARNING UNNECESSARILY
- DOESN'T ADDRESS NEUTRAL CLASS OR CONFUSION MATRIX
- IGNORES CLASS IMBALANCE

Bonus flags

DEPLOYMENT What if too many reviews are labeled Neutral? ALTERNATIVE
 Combine rule-based logic with ML for edge cases.

Business-centered machine learning use case





- (01) OUTLINE A MACHINE LEARNING SOLUTION TO PREDICT CHURN
- (02) IDENTIFY NEEDED DATA AND LABELING STRATEGY
- (03) SUGGEST A MODELING APPROACH AND JUSTIFY IT
- 04) DEFINE EVALUATION STRATEGY, INCLUDING BUSINESS IMPACT
- (05) CONSIDER COST-SENSITIVE EVALUATION AND INTERVENTION PRIORITIZATION

Business-centered machine learning use case

- FRAMING
 Binary classification; churn = inactive 30+ days or cancelled.
- DATA
 Logins, session length, support tickets, subscription type, payment history.
- MODELING
 Start with Logistic Regression, then Gradient Boosted Trees. Use SHAP for explainability.
- EVALUATION
 ROC-AUC, recall. Track impact on retention rate or revenue lift.
- IMPROVEMENTS
 Use model scores to trigger retention offers.

What to look for

- BUSINESS-ORIENTED FRAMING OF THE PROBLEM
- SOLID FEATURE SUGGESTIONS
 WITH CLEAR RATIONALE
- DISCUSSION OF TRADE-OFFS AND THRESHOLDS
- TIES PREDICTIONS TO ACTIONS (E.G., MARKETING, RETENTION)

► Red flags

- DOESN'T DEFINE CHURN PRECISELY
- NO MENTION OF COST OF FALSE NEGATIVES
- CHOOSES HIGH-COMPLEXITY MODELS WITHOUT JUSTIFICATION
- IGNORES HOW MODEL FITS INTO BUSINESS WORKFLOW

Bonus flags

DEPLOYMENT
 How would you monitor drift in user behavior?

ALTERNATIVE
 Segment users with clustering before modeling churn.

A summary table comparing tasks side-by-side

TASK	SKILLTESTED	COMMON PITFALLS	GOOD SIGNS
TASK 1: SPAM FILTER	Data prep, model evaluation	Ignores imbalance, uses accuracy only	Discusses metrics, class weighting
TASK 2: SENTIMENT	NLP basics, multiclass	Skips preprocessing, uses BERT too early	Chooses simple models, analyzes errors
TASK 3: CHURN	Business thinking, feature selection	Ignores imbalance, uses accuracy only	Discusses metrics, class weighting

